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From images to knowledge... efficiently!
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Motivation




Research under DOE mission science

Large amount of research relies on image-based data

Amount of data continues to increase

Science questions are increasing in complexity and sophistication
Opportunity to improve data analysis algorithms and software

Enable accurate and deep understanding for decision-making

Analysis bottlenecks: unsuitable data representation, optimization taking into
account the veracity of the data, use physical constraints, consider multiple
scales and dimensions, computational complexity
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The 4D Camera - Dynamic Diffraction Direct Detector

e Latest innovationin EM

e EM experiments: amount of information used
among all the possible information generated as
the microscope's beam interacts with samples

e 4D Camera: captures all!

e [ast, high-resolution microscopy => generating 4
terabytes of data per minute

e Atomic-scale images in millionths-of-a-second

The Transmission Electron  Aberration-corrected
Microscope (TEAM 0.5) at Berkeley Lab has been
upgraded with a new detector that can capture
atomic-scale images in millionths-of-a-second
increments. (Credit: Thor Swift/Berkeley Lab)
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3D images of platinum particles between 2-3 nanometers in diameter shown rotating in liquid under an electron
microscope. Each nanoparticle has approximately 600 atoms. White spheres indicate the position of each atom in
a nanoparticle. (Courtesy of IBS)



https://docs.google.com/file/d/1Rm7Dsk1Vdrsm-JL_V0KX3NTjs7xDczNX/preview

Basic Concepts




How and why graphs?

e Discrete and mathematically simple representation: efficiency and
correctness

e Minimalistic representation: flexibility

e Graph theory is out there already!

e Allows for structural representation



Graphs

A graph is a set of vertices and edges G={V,E}

V={A,B,C,D,E} E-={AB,BC,BD,CD,CE, ED}

Node: fundamental unit out of which graphs are formed
Edge: gives relationship between vertices

Important terms: adjacency, complete graph, subgraph,
cligues, neighborhood

Directed vs undirected?




Graphs from images

Pixel-based graph

Region-based graph

Important to notice: nodes and neighborhood




Markov Random Fields

Energy function with two terms:

1. Dataterm
2. Smoothness term

Usually we want to minimize this energy
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Higher-order RF
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Order n

“higher-order energy”



Markov Random Fields
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Markov Random Fields
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Markov Random Fields £3MBIB

The probability of the random value X taking the value x; is
denoted P(X; = xs) and the joint probability is given by
P(X =x)=P(Xs = xg; Xt = X¢; ...).

The joint probability allows us to calculate the image
likelihnood and the conditional local probabilities provide a
way to mesure the statistical connections between a gray
level and the rest of the image. Those probabilities can be
calculated through the Markovian hypothesis.



Interactive Machine Learning for
Tomogram Segmentation




Electron Cryotomography - CryoET SsMBIR
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"An electron microscope is used to record a series of two-dimensional images as a
biological sample held at cryogenic temperatures is tilted. Using computational
methods, the two-dimensional images can be aligned to yield a three-dimensional
(tomographic) reconstruction of the sample." Nature.com

Special type of CryoTEM. Samples are immobilized in non-crystalline ice and
imaged under cryogenic conditions. Provides unique information on protein
structure and interactions in situ.
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Electron Cryotomography - CryoET
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3D reconstruction

Segmentation

s 3D reconstruction,
of individual regularization and
molecules refinement

Credit: Faisal Mahmood "An Extended Field-based method for
Noise Removal from Electron Tomographic Reconstructions"




Electron Cryotomography - CryoET
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e Unique details about specimens including
subcellular organelles or structurally
heterogeneous protein complexes

e Drug development through the study of drug
liposome

e Because of the macromolecular resolution, used
to study viruses and small cells

By Eikosi - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45409611



Issues with segmentation methods

BERKELEY LAB

1. Connections between inner and outer membrane prevents isolation of one
membrane

Low SNR causes membranes to be rough/noisy

Variations in density results in holey membrane surface

Proteins and membranes can not be separated

Manual segmentation is the most effective method - 3 months of work
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Research goals

Algorithm that:

1. Detects and labels distinct cellular features
2. Distinguishes between proteins and membrane
3. Generated smooth surface for membranes, free from noise and artificial holes

Approach:
1.  Machine learning with user interaction
Novelties:

1. Using prior knowledge and user input to correct and direct segmentation
2. Not pixel based; higher-level (shape patterns) instead
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General approach
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Non-local means denoising

The NLM algorithm replaces the value of a pixel by an average of a selection of
other pixels values: small patches centered on the other pixels are compared to
the patch centered on the pixel of interest, and the average is performed only for
pixels that have patches close to the current patch. We estimate the noise
standard deviation directly from the image. This algorithm performs well by
reducing noise and restoring well textures that would be blurred by other denoising
algorithms (resulting in preservation of valuable details).

Jacques Froment. Parameter-Free Fast Pixelwise Non-Local Means Denoising. Image Processing On Line, 2014, vol. 4,
pp. 300-326. DOI: 10.5201/ipol.2014.120
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Bilateral filter

BERKELEY LAB

This filter is an edge-preserving and noise reducing filter. It averages pixels based
on their spatial closeness and radiometric similarity. In other words, it smooths
homogeneous regions of the image and preserves details (such as borders of
objects).

C. Tomasi and R. Manduchi. “Bilateral Filtering for Gray and Color Images.” IEEE International Conference on Computer
Vision (1998) 839-846. DOI:10.1109/ICCV.1998.710815
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Bilateral filtering




Adaptive local contrast enhancement

This process applies a technique called Contrast Limited Adaptive Histogram
Equalization (CLAHE). It uses histograms computed over different tile regions of
the image. Local details can therefore be enhanced even in regions that are
darker or lighter than most of the image.

Zuiderveld, Karel. “Contrast Limited Adaptive Histogram Equalization.” Graphic Gems IV. San Diego: Academic Press
Professional, 1994. 474—-485.
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Ridge detection

BERKELEY LAB

We perform ridge detection through Hessian matrix calculation: we convolve the
image with the second derivatives of a Gaussian kernel in different directions.
Then we find the eigenvalues of the Hessian matrix, detecting ridge structure
where the intensity changes perpendicular but not along the structure.

Ng, C. C., Yap, M. H., Costen, N., & Li, B. (2014, November). Automatic wrinkle detection using hybrid Hessian filter. In

Asian Conference on Computer Vision (pp. 609-622). Springer International Publishing.
DOI:10.1007/978-3-319-16811-1_40
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Skeletonization
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The skeletonization process reduces binary objects to 1 pixel wide
representations. The idea behind this process is to simplify connected
components aiming feature extraction.

A fast parallel algorithm for thinning digital patterns, T. Y. Zhang and C. Y. Suen, Communications of the ACM, March 1984,
Volume 27, Number 3.

T.-C. Lee, R.L. Kashyap and C.-N. Chu, Building skeleton models via 3-D medial surface/axis thinning algorithms.
Computer Vision, Graphics, and Image Processing, 56(6):462-478, 1994.
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Bifurcation detection

This step aims to simplify the skeleton by subdividing every connected component
by detecting bifurcations. In the end of this process, every component in the image
is a simple open curve. The bifurcations are detected using a process called
morphological hit-or-miss, which finds a given configuration (in our case a possible
bifurcation) in a binary image using the morphological erosion operator.

https://en.wikipedia.org/wiki/Hit-or-miss_transform
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Bifurcation detection




Processing steps

Bifurcation detection




Geometric approximation

BERKELEY LAB

Now that the binary images contains components that are simple open curves, we
go through a preprocessing for the graph construction step. Here, we approximate
each curve by simple straight lines.

Formally, the algorithm approximates a curve/polygon with another curve/polygon
with less vertices so that the distance between them is less or equal to the
specified precision. The algorithm used is called Douglas-Peucker algorithm.

Prasad, Dilip K.; Leung, Maylor K.H.; Quek, Chai; Cho, Siu-Yeung (2012). "A novel framework for making dominant point
detection methods non-parametric”. Image and Vision Computing. 30 (11): 843—-859. doi:10.1016/j.imavis.2012.06.010.

Wu, Shin-Ting; Marquez, Mercedes (2003). "A non-self-intersection Douglas-Peucker algorithm". 16th Brazilian Symposium
on Computer Graphics and Image Processing (SIBGRAPI 2003). Sao Carlos, Brazil: IEEE. pp. 60-66. CiteSeerX
10.1.1.73.5773. doi:10.1109/SIBGRA.2003.1240992. ISBN 978-0-7695-2032-2.
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Approximation points



Low-level graph representation

In this step, we represent the structures in the image as a graph:

e Each node of the graph is a line segment obtained from the previous step

e Two nodes are connected if they are in the same curve

e \With this process, we obtain what is called a forest (a collection of tree-like
graphs)
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100 A

200 -

300 4

400 -

500 -

600 -

BERKELEY LAB

100 200 300 400 500 600 700




Object reconstruction using MRF model

Outer membrane reconstruction process:

1) User chooses a starting point from the low-level graph

2) Algorithm reconstructs the object using prior information
a) Curvature of the targeted feature
b) Closeness between features
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Processing steps
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High-level graph representation

This time we represent the feature detected (outer-membrane) also as a graph.
However, in this case, each node of the graph is a curve and nodes are connected
to obtain the final approximation of the feature (mathematical interpolation).
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Surface reconstruction

Based on the feature reconstructed in one slice, we now are able to reconstruct
that same feature in 3D automatically also using prior information targeting
smoothness and closeness.
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Low-level graph
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High-level graph and interpolation =

50 A

100 A

150 A

200 A

250 4

300 1

350 A

100

200

300

400

500

-
o : '\‘
$:MBIB

'@® " Wolecular Biophysics & BERKELEY LAB

Integrated Bioimaging




Parallel Markov Random Fields
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Problem: segmentation of 3D scientific images

(a) Original data (b) Oversegmentation (c¢) PMRF segmentation

Fig. 1: Going from a raw image obtained by experiment to a segmented image suitable
for quantitative analysis involves multiple processing stages.
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Contributions

e Three different implementations of a Probabilistic Graphical Model optimization
algorithm: C11-threads, OpenMP, and DPP

e In-depth study of shared-memory parallel performance of the three
implementations

o Analysis of hardware performance counters on multiple platforms
o DPP implementation exhibits better runtime but less favorable scaling characteristics

56



The PMRF process
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Baseline MRF

Algorithm 1 Baseline MRF

Require: Original image, oversegmentation, number of output labels
Ensure: Segmented image and estimated parameters
Initialize parameters and labels randomly
Create graph from oversegmentation
Find maximal cliques of the graph
Construct k-neighborhoods for all maximal cliques
for each EM iteration do

for each neighborhood of the subgraph do

Compute MAP estimation

end for

Update parameters and labels
end for

—
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C++/Threads PMRF

Algorithm 2 C++/Threads: Threaded implementation of parallel MRF

Require: Original image, oversegmentation, number of output labels
Ensure: Segmented image and estimated parameters
Initialize parameters and labels randomly
Create graph from oversegmentation
Find maximal cliques of the graph
Construct k-neighborhoods for all maximal cliques
Partition into T groups of size N/T
for In parallel: each thread processes its N/T group do
for each EM iteration do
for each neighborhood of the subgraph do
9: Compute MAP estimation
10: end for
11: Update parameters and labels
12: end for
13: end for

59



C++/OpenMP PMRF

;
¥+ MBIB

Algorithm 3 C++/OpenMP: Parallelization with OpenMP

Require: Original image, oversegmentation, number of output labels
Ensure: Segmented image and estimated parameters

—

Initialize parameters and labels randomly
Create graph from oversegmentation
Find maximal cliques of the graph
Construct k-neighborhoods for all maximal cliques
for each EM iteration do
for OpenMP parallel each neighborhood of the subgraph do
Compute MAP estimation
end for
Update parameters and labels
end for

BERKELEY LAB
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VTK-m/DPP PMRF

Algorithm 4 VTK-m/DPP: Data parallel primitive version of Markov Random
Field algorithm

Require: Original image, oversegmentation, number of output labels
Ensure: Segmented image and estimated parameters
DPP wn parallel: Create graph from oversegmentation
DPP wn parallel: Enumerate maximal cliques of graph
Initialize parameters and labels randomly
DPP wn parallel: Construct k-neighborhoods from maximal cliques
DPP in parallel: Replicate neighborhoods by label
for each EM iteration do

DPP in parallel: Gather replicated parameters and labels

for each vertex of each neighborhood do

DPP in parallel: MAP estimation

end for

DPP in parallel: Update parameters and labels
: end for

— =
N = O ©
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Experiment and Results

We aim to answer two primary questions:

1. How well the different implementations perform on a single-socket study
a. What are the key performance characteristics for each version?

2. Collect hardware performance counters to understand how well each

implementation vectorizes and makes use of the memory hierarchy
a. What are the factors that lead to these performance characteristics?

62



Experiment and Results

Datasets: experimental dataset generated at the ALS beamline 8.3.2
containing cross-sections of a geological sample

1. Sandstone2K: 2580 x 2610 x 500
2. SandstonebK: 5160 x 5220 x 500
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Performance and Scalability

Speedup Sandstone 2K Speedup Sandstone 5K

2601 2601

2401 2404

2001 2001
o 1607 Implementation g 1607 Implementation
o] ]
5 <+ DPP ] <+ DPP
.. <+ Ideal ... * Ideal
120 < OpenMP 120 < OpenMP
« -+ Threaded w -+ Threaded

80+ 80-

40+ 40+

14 14 —
i 40 80 120 160 200 240 260 1 40 80 120 160 200 240 260
Number of Threads Number of Threads

Fig. 2: Speedup of the Sandstone2K and Sandstoneb5K datasets on Cori. The horizontal
axis is the concurrency level and the vertical axis measures the speedup.
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Performance and Scalability

Speedup Sandstone5K

Speedup Sandstone2K
8 8
a Implementation o Implementation
= =}
3 = DPP 3 = DPP
b} = |deal [0} = |deal
(%4 = OpenMP (2-4 = OpenMP
= Threaded = Threaded
2 2
1
1 2 4 8

Number of Threads

4
Number of Threads

Fig. 3: Speedup of the Sandstone2K and SandstonebK datasets on the Ivy Bridge
platform. The horizontal axis is the concurrency level and the vertical axis measures

the speedup.
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Hardware performance counters

Table 1: KNL Platform and Hardware Performance Counters for the SandstonebK
Dataset. Legend for counters: FLOPS: FLOPS DP (x10%); Vector%: Vectorization
Ratio (Proxy); L2 Miss Ratio: average % across all threads at a given concurrency.

Counter Code ver. Concurrency
1 2 4 8 16 32 64 128 256
Runtime (secs)  VIK-m/DPP 5.78 3.93 3.01 1.33 0.94 0.90 1.84 6.65 27.39

FLOPS

L2 Miss Ratio %

Vector %

C++/OpenMP 143.56 72.75 36.48 18.25 9.14
C++/Threads 140.16 70.24 35.48 18.09 9.89

4.58 2.31 140 1.13
6.73 10.92 21.60 43.23

1 2 4 8 16

32 64 128 256

VTK-m/DPP 0.85 0.86 0.86 0.86 0.86

0.86 0.86 0.88 0.88

C++/OpenMP  49.32 49.32 49.32 49.32 49.32 49.32 49.32 49.32 49.32
C++/Threads  45.39 45.49 45.59 45.79 46.19 47.00 48.62 51.84 57.66

1 2 4 8 16

32 64 128 256

VTK-m/DPP 0.01 0.20 0.39 0.97 2.86

C++/OpenMP  0.01 0.01 0.02 0.09 0.09

C++/Threads 0.01 0.01 0.06 0.16 0.28
1

VTK-m/DPP  43.48%
C++/OpenMP 51.44%
C++/Threads 46.89%

7.72 24.79 61.05 64.66
0.06 0.11 1.22 8.12
0.36 0.42 094 1.57

BERKELEY LAB
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Hardware performance counters MBI

Table 2: Ivy Bridge Platform and Hardware Performance Counters for the Sand-
stonebK Dataset. Legend for counters: FLOPS: (Double Precision Scalar FLOPS +
Double Precision Vector FLOPS) / (10%); Vector%: Vectorization Ratio; L2 Miss Ra-
tio: average % across all threads at a given concurrency.

Counter/Measure Code version  Concurrency
1 2 4 8

Runtime (secs) VTK-m/DPP 2.51 1.46 1.30 0.83
C++/OpenMP 13.34 6.66 3.35 1.83
C++/Threads 13.94 7.00 3.51 2.16

1 2 4 8

FLOPS (¥10°) VTK-m/DPP  0.47 0.33 0.33 0.33
C++/OpenMP  7.14 7.13 7.13 7.13
C-++/Threads  7.25 7.26 7.26 7.27

1 2 4 8

L2 Miss Ratio % VTK-m/DPP 0.26 0.26 0.25 0.25
C++/OpenMP  0.05 0.07 0.05 0.05
C++/Threads 0.04 0.06 0.06 0.06

1

Vector % VTK-m/DPP 18.16%
C+-+/OpenMP 73.31%
C+-+/Threads 70.43%
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Key findings

1. The VTK-m/DPP code is executing far fewer floating point instructions

2. Vectorization ratios
a. KNL: comparable vectorization ratios (43% - 51%)
b. Ivy Bridge: 70% for the C++/OpenMP and C++/Threads; 18% for the VTK-m/DPP implementation
i. Differences in the code itself
ii. Variation in how the compiler auto-vectorizes

3. Scalability
a. VTK-m/DPP (KNL): decreasing runtime up to 32 cores, along with increase in the L2 Cache Miss
ratio

b. C++/Threads (KNL): decreasing runtime up to 32 cores, after which point the runtime increases
significantly -> C++/OpenMP presents better results most likely because of the highly optimized
OpenMP loop parallelization

c. Onthe lvy Bridge platform all implementations exhibit better scalability: large L3 cache that is

shared across all cores
68
e



Conclusion and Future Work

Understand the performance characteristics of three different approaches for
doing shared-memory parallelization of a PGM optimization code

Improve throughput of scientific analysis tools in light of increasing sensor and
detector resolution

We expected that the VTK-m/DPP implementation was running faster because
of better vectorization... not true! It executes many fewer instructions

This study is timely, shedding light on the performance characteristics of a
non-trivial, data-intensive code implemented with three different
methodologies

Future: pressing deeper into the topic of platform portability: OpenMP version
to emit GPU code
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Thanks!

tperciano@lbl.gov
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